EGFR Mutations Compromise Hypoxia-Associated Radiation Resistance through Impaired Replication Fork-Associated DNA Damage Repair.

نویسندگان

  • Mohammad Saki
  • Haruhiko Makino
  • Prashanthi Javvadi
  • Nozomi Tomimatsu
  • Liang-Hao Ding
  • Jennifer E Clark
  • Elaine Gavin
  • Kenichi Takeda
  • Joel Andrews
  • Debabrata Saha
  • Michael D Story
  • Sandeep Burma
  • Chaitanya S Nirodi
چکیده

EGFR signaling has been implicated in hypoxia-associated resistance to radiation or chemotherapy. Non-small cell lung carcinomas (NSCLC) with activating L858R or ΔE746-E750 EGFR mutations exhibit elevated EGFR activity and downstream signaling. Here, relative to wild-type (WT) EGFR, mutant (MT) EGFR expression significantly increases radiosensitivity in hypoxic cells. Gene expression profiling in human bronchial epithelial cells (HBEC) revealed that MT-EGFR expression elevated transcripts related to cell cycle and replication in aerobic and hypoxic conditions and downregulated RAD50, a critical component of nonhomologous end joining and homologous recombination DNA repair pathways. NSCLCs and HBEC with MT-EGFR revealed elevated basal and hypoxia-induced γ-H2AX-associated DNA lesions that were coincident with replication protein A in the S-phase nuclei. DNA fiber analysis showed that, relative to WT-EGFR, MT-EGFR NSCLCs harbored significantly higher levels of stalled replication forks and decreased fork velocities in aerobic and hypoxic conditions. EGFR blockade by cetuximab significantly increased radiosensitivity in hypoxic cells, recapitulating MT-EGFR expression and closely resembling synthetic lethality of PARP inhibition.Implications: This study demonstrates that within an altered DNA damage response of hypoxic NSCLC cells, mutant EGFR expression, or EGFR blockade by cetuximab exerts a synthetic lethality effect and significantly compromises radiation resistance in hypoxic tumor cells. Mol Cancer Res; 15(11); 1503-16. ©2017 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment.

Epidermal growth factor receptor (EGFR) overexpression is associated with resistance to chemotherapy and radiotherapy. It modulates DNA repair after radiation-induced damage through association with the catalytic subunit of DNA protein kinase (DNA-PKcs). We investigated the role of EGFR nuclear import and its association with DNA-PKcs on DNA repair after exposure to cisplatin or ionizing radiat...

متن کامل

Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review.

Epidermal growth factor receptor (EGFR) overexpression is associated with resistance to chemotherapy and radiotherapy. The EGFR modulates DNA repair after radiation-induced damage through an association with the catalytic subunit of DNA protein kinase. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation, and non-homologous end joining is the pred...

متن کامل

Replication fork integrity and intra-S phase checkpoint suppress gene amplification

Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Ce...

متن کامل

Hypoxia and the DNA Damage Response

Gradients of hypoxia occur in most solid tumors. Cells found in these regions are associated with the most aggressive and therapy-resistant fractions of the tumor. Severe levels of hypoxia (< 0.1 % O2) have been found to induce a unique DNA damage response (DDR) that includes bothATRandATM-mediated signaling. The consequences of the hypoxia-induced DDR include p53-dependent apoptosis and mainte...

متن کامل

A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression

In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186-212 that are also critical for b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2017